

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA
 NATIONAL CERTIFICATE
 MATHEMATICS N2
 TIME: 3 HOURS
 MARKS: 100

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4.
5.
6. Questions may be answered in any order but subsections of questions must be kept together.
7. Use only BLUE or BLACK ink.
8. Write neatly and legibly.

QUESTION 1

1.1 Determine the highest common factor(HCF) and the lowest common multiple(LCM) of the following expressions:

$$
\begin{align*}
& x^{2}-4 \\
& 8 x^{2}-14 x-4 \\
& x^{3}+2 x^{2}-4 x-8 \tag{8}
\end{align*}
$$

1.2 Simplify the following fractions:
1.2.1 $\quad \frac{1}{4 x-4}+\frac{6}{8(x-1)}-\frac{1}{x^{2}-1}$
1.2.2 $\frac{x^{2}-9}{4 x^{2}-9} \div \frac{8 x+12}{4 x^{2}-9} \times \frac{8 x+12}{4 x-12}$

QUESTION 2

2.1 Solve for x in the following equation by using the quadratic formula:

$$
\begin{equation*}
x(5 x-6)=2(3+x) \tag{4}
\end{equation*}
$$

2.2 Solve for x and y in the following equations simultaneously: $y=x-1$ and $\frac{x}{4}+y=4$
2.3 Change the subject of the formula to the symbol in brackets:

$$
\begin{equation*}
\frac{3}{x}=A-\frac{5}{y} . \tag{y}
\end{equation*}
$$

2.4 In a two-digit number the tens-digit is 2 more than the units digit. If the digits are interchanged the sum of the new number and the original number is 88 . Find the original number.

QUESTION 3

3.1 Simplify the following:
3.1.1 $\quad \frac{3^{x-1} \times 9^{x+2}}{27^{x+1}}$
3.1.2 $\sqrt{\sqrt[3]{64 x^{8} x^{4}}}$
3.2 Solve for x in the following equations:
3.2.1
$16^{x+1}-4^{3}=0$
3.2.2 $\quad 3^{4 x^{2}-1}=1$
3.3 Solve for x in the following equation by using logarithmic laws:
$\log _{2}\left(x^{2}-2 x\right)=3$

QUESTION 4

4.1 A wheel turns at 2106 revolutions per minute.

Calculate the following:
4.1.1 The revolutions per second
4.1.2 The circumferential velocity of the wheel in meters per second if the wheel has a diameter of 28 cm .
4.2 Calculate the length of the chord of a circle of which the radius is 21 mm , and the height of the segment is 10 mm .
4.3 Determine the value of the following:

$$
\begin{equation*}
e^{-0,5} \cos \left(\ln \frac{\pi}{4}\right)+\sin 270^{\circ}-\tan \pi \tag{1}
\end{equation*}
$$

4.4 A closed cylindrical water tank in FIGURE 1 has a diameter of 560 mm and height of h cm respectively. The water tank has a surface area of $7891 \mathrm{~cm}^{2}$.

FIGURE 1
4.4.1 Calculate the height of the water tank in cm .
4.4.2 How many litres of water will the water tank hold?
4.5 A lead ball with a diameter of 120 mm is melted and cast into the shape of smaller cubes with 2 cm height. How many of these smaller cubes can be formed?

QUESTION 5

5.1 Consider FIGURE 2 below. AD , a vertical cliff, is $65,8 \mathrm{~m}$ high. B and C are two boats in the same horizontal plane as the foot of the cliff. The angle of elevation from C to D is y^{0}. $D C=104 \mathrm{~m}$ and $\mathrm{AB}=49,7 \mathrm{~m}$.
$\mathrm{D}, \mathrm{B}, \mathrm{C}$ and A are all in the same vertical plane.

FIGURE 2
5.1.1 Calculate the length of the side DB.
5.1.2 Calculate the magnitude of the angle y.
5.1.3 Calculate the length of the side BC.
5.2 If $\sin \theta=m$ and $\theta \leq 90^{\circ}$, express the following values in terms of m.
5.2.1 $\tan \theta$
5.2.2 $\sin ^{2} \theta+\cos ^{2} \theta$

QUESTION 6

6.1
6.1. Sketch, on ONE system of axes, the graphs of the following:
$g(x)=2 \cos x$ and $h(x)=\sin x+2$ for $0^{\circ} \leq x \leq 180^{\circ}$
6.1.2 Read from the graph the co-ordinates if

$$
\begin{equation*}
2 \cos x=\sin x+2 \tag{1}
\end{equation*}
$$

6.2 Given: $f(x)=-x^{2}+7, g(x)=7-x$ and $h(x)=7$
6.2.1 By calculating the roots, the y-intercept and the turning point, sketch the graph of $f(x)=-x^{2}+7$

Clearly indicate ALL calculated values on the graph.
6.2.2 Now, on the same system of axes, sketch the graphs of

$$
\begin{equation*}
g(x)=7-x \text { and } h(x)=7 \tag{3}
\end{equation*}
$$

6.2.3 Read from the graph the co-ordinates of the point(s) where all three the graphs in QUESTION 6.2.2 intersect each other.

MATHEMATICS N2

INFORMATION SHEET

Right cone

Volume $=1 / 3 \pi r^{2} h$
Surface area $=\pi r \sqrt{\mathrm{~h}^{2}+\mathrm{r}^{2}}+\pi \mathrm{r}^{2}$

$$
=\pi \mathrm{r} \ell+\pi \mathrm{r}^{2}
$$

Right pyramid

Volume $=\frac{1}{3}($ area of base $) \times($ perpendicular height $)$

Prism

Volume $=($ area of base $) \times($ perpendicular height $)$

Cylinder

Volume $=\pi r^{2} h$
Surface area $=2 \pi r^{2}+2 \pi r h$

Sphere

$V=\frac{4}{3} \pi r^{3} ; A=4 \pi r^{2}$
Degrees and radians
$180^{\circ}=\pi \mathrm{rad}$
Sector: $\theta=\frac{\text { arc }}{\text { radius }} ; A=1 / 2 r^{2} \theta$
Angular velocity and circumferential velocity
Angular velocity: $w=2 \pi n$
Circumferential velocity: $v=\pi D n$
$n=$ rotation frequency ($\mathrm{r} / \mathrm{s}=$ revolution per second)

Mid-ordinate rule

$A=\left[\frac{\text { First ordinate }+ \text { last ordinate }}{2}+\right.$ sum of other ordinates $] \times$ common distance

Graphs

Straight line: $y=m x+c \quad$ Parabola: $y=a x^{2}+b x+c$
Axis of symmetry: $x=\frac{-\mathrm{b}}{2 \mathrm{a}}$

Roots: $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$

Trigonometry

$90^{\circ}<\theta<180^{\circ} \quad \sin \theta=\sin \left(180^{\circ}-\theta\right) \quad \cos \theta=-\cos \left(180^{\circ}-\theta\right)$
$\tan \theta=-\tan \left(180^{\circ}-\theta\right)$

Segments of circles
Chord length $=x$
Height of segment $=h \quad$ Diameter of circle $=D$
$\mathrm{D}=\mathrm{h}+\frac{x^{2}}{4 \mathrm{~h}}$
Regular polygons
Angle subtended at centre of circumscribed circle by one side:
$\theta=\frac{360^{\circ}}{\text { number of sides }}$
$\mathrm{R}=$ radius of circumscribed circle
$x=$ length of side
$x=2 \mathrm{R} \sin \frac{\theta}{2}$
Annulus: $\mathrm{A}=\pi\left(R^{2}-r^{2}\right)$

