

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T860(E)(N24)T NOVEMBER EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N2

(16030192)

24 November 2016 (X-Paper) 09:00–12:00

Scientific calculators may be used.

This question paper consists of 6 pages and 1 information sheet of 2 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

-2-

NATIONAL CERTIFICATE MATHEMATICS N2 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL formulae and intermediate steps and simplify where possible.
- 5. ALL final answers must be rounded off to THREE decimal places.
- 6. Questions may be answered in any order but subsections of questions must be kept together.
- 7. Use only BLUE or BLACK ink.
- 8. Write neatly and legibly.

QUESTION 1

1.1 Determine the highest common factor(HCF) and the lowest common multiple(LCM) of the following expressions:

$$x^{2} - 4
 8x^{2} - 14x - 4
 x^{3} + 2x^{2} - 4x - 8
 (8)$$

1.2 Simplify the following fractions:

1.2.1
$$\frac{1}{4x-4} + \frac{6}{8(x-1)} - \frac{1}{x^2-1}$$
 (4)

1.2.2
$$\frac{x^2 - 9}{4x^2 - 9} \div \frac{8x + 12}{4x^2 - 9} \times \frac{8x + 12}{4x - 12}$$
(4)

QUESTION 2

2.1	Solve for x in the following equation by using the quadratic formula:	
	x(5x-6) = 2(3+x)	(4)
2.2	Solve for x and y in the following equations simultaneously:	
	$y = x - 1$ and $\frac{x}{4} + y = 4$	(4)
2.3	Change the subject of the formula to the symbol in brackets:	
	$\frac{3}{2} = 4 = \frac{5}{2}$ (v)	
	x y	(3)
2.4	In a two-digit number the tens-digit is 2 more than the units digit. If the digits are	
	interchanged the sum of the new number and the original number is 88. Find the	
	original number.	(4)
		[15]
		[15]

T860(E)(N24)T

(5)

[19]

QUESTION 3

3.1 Simplify the following:

 $\frac{3.1.1}{27^{x+1}} \qquad \frac{3^{x-1} \times 9^{x+2}}{27^{x+1}} \tag{3}$

3.1.2
$$\sqrt[3]{64x^8x^4}$$
 (3)

3.2 Solve for x in the following equations:

$$3.2.1 16^{x+1} - 4^3 = 0 (3)$$

$$3.2.2 \qquad 3^{4x^{-1}} = 1 \tag{5}$$

3.3 Solve for x in the following equation by using logarithmic laws:

$$\log_2(x^2 - 2x) = 3$$

QUESTION 4

4.1 A wheel turns at 2106 revolutions per minute. Calculate the following: The revolutions per second 4.1.1 (1) 4.1.2 The circumferential velocity of the wheel in meters per second if the wheel has a diameter of 28 cm. (3) Calculate the length of the chord of a circle of which the radius is 21mm, and the 4.2 height of the segment is 10mm. (4) 4.3 Determine the value of the following:

$$e^{-0.5}\cos\left(\ln\frac{\pi}{4}\right) + \sin 270^{\circ} - \tan\pi \tag{1}$$

QUESTION 5

5.1 Consider FIGURE 2 below. AD, a vertical cliff, is 65,8 m high. B and C are two boats in the same horizontal plane as the foot of the cliff. The angle of elevation from C to D is y° . DC = 104 m and AB = 49,7 m.

D, B, C and A are all in the same vertical plane.

-6-

T860(E)(N24)T

	5.1.1	Calculate the length of the side DB.	(3)
	5.1.2	Calculate the magnitude of the angle y_{\perp}	(2)
	5.1.3	Calculate the length of the side BC.	(4)
5.2	If $\sin \theta =$	<i>m</i> and $\theta \leq 90^{\circ}$, express the following values in terms of <i>m</i> .	
	5.2.1	$\tan heta$	(2)
	5.2.2	$\sin^2\theta + \cos^2\theta$	(2) [13]
QUES	STION 6		
6.1	6.1.1	Sketch, on ONE system of axes, the graphs of the following:	
		$g(x) = 2\cos x$ and $h(x) = \sin x + 2$ for $0^{\circ} \le x \le 180^{\circ}$	(5)
	6.1.2	Read from the graph the co-ordinates if	
		$2\cos x = \sin x + 2$	(1)
6.2	Given: f	$f(x) = -x^2 + 7$, $g(x) = 7 - x$ and $h(x) = 7$	
	6.2.1	By calculating the roots, the y-intercept and the turning point, sketch the graph of $f(x) = -x^2 + 7$	
		Clearly indicate ALL calculated values on the graph.	(5)
	6.2.2	Now, on the same system of axes, sketch the graphs of	
		g(x) = 7 - x and $h(x) = 7$	(3)
	6.2.3	Read from the graph the co-ordinates of the point(s) where all three the graphs in OUESTION 6.2.2 intersect each other.	(2)
			[16]
		TOTAL:	100

MATHEMATICS N2

INFORMATION SHEET

Right cone

Volume = $\frac{1}{3}\pi r^2 h$ Surface area = $\pi r \sqrt{h^2 + r^2} + \pi r^2$ = $\pi r \ell + \pi r^2$

Right pyramid

Volume = $\frac{1}{3}$ (area of base) × (perpendicular height)

Prism

Volume = (area of base) × (perpendicular height)

Cylinder

Volume = $\pi r^2 h$ Surface area = $2\pi r^2 + 2\pi rh$

Sphere

 $V = \frac{4}{3}\pi r^3$; $A = 4\pi r^2$

Degrees and radians $180^\circ = \pi$ rad

Sector: $\theta = \frac{\operatorname{arc}}{\operatorname{radius}}$; $A = \frac{1}{2}r^2 \theta$

Angular velocity and circumferential velocity

Angular velocity: $w = 2\pi n$ Circumferential velocity: $v = \pi Dn$ n = rotation frequency (r/s = revolution per second)

Mid-ordinate rule

 $A = \left[\frac{\text{First ordinate+last ordinate}}{2} + \text{ sum of other ordinates}\right] \times \text{common distance}$

Graphs Straight line: y = mx + cAxis of symmetry: $x = \frac{-b}{2a}$

Parabola: $y = ax^2 + bx + c$

Roots: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Copyright reserved

Trigonometry

 $90^{\circ} < \theta < 180^{\circ}$ sin $\theta = \sin(180^{\circ} - \theta)$ cos $\theta = -\cos(180^{\circ} - \theta)$ tan $\theta = -\tan(180^{\circ} - \theta)$

Segments of circles Chord length = x

Height of segment = h

Diameter of circle
$$= D$$

 $\mathbf{D} = \mathbf{h} + \frac{x^2}{4\mathbf{h}}$

Regular polygons Angle subtended at centre of circumscribed circle by one side:

 $\theta = \frac{360^{\circ}}{\text{number of sides}}$

R = radius of circumscribed circle x = length of side

2

 $x = 2R \sin \frac{\theta}{2}$

Annulus: A =π